Manuál k ovládání programu STATISTICA

Mgr. Petra Beranová
Mgr. Lenka Blažková
Ing. Miloš Uldrích
Obsah:

1 Úvod ... 3
2 Spuštění programu STATISTICA.. 3
3 Načtení souboru .. 6
 Příklad – import dat z Excelu .. 6
4 Vytvoření základní výpočtů – popisné statistiky .. 8
5 Vytvoření grafu .. 11
 5.1 Histogram .. 11
 Přes Grafy -> 2D grafy -> Histogramy.. 11
 5.2 Krabicový graf (Box Plot) .. 11
 Přes Grafy -> 2D grafy -> Krabicové grafy.. 11
 5.3 Regulační diagram .. 13
6 Uložení práce ... 14
 6.1 Uložení celé rozdělené práce... 14
 6.2 Uložení tabulky v softwaru... 15
6.3 Uložení grafu ... 17
6.4 Přidání výstupů do Microsoft Word... 18
7 Další možnosti načtení souborů .. 19
 7.1 Otevření textového souboru .. 22
8 Správce výstupů ... 25
 8.1 Výstup do Microsoft Word / do protokolu STATISTICA .. 25
9 Další příklady analýzy dat ... 27
 9.1 Příklad – výpočet popisných statistik ... 27
 Rozdělení spojitě proměnné dle kategorie.. 30
9.2 Analýza způsobilosti procesu ... 32
 Úvod.. 32
 Ohodnocení normality a prokládání rozdělení ... 34
 Indexy způsobilosti procesu .. 37
10 Ověření normality v softwaru STATISTICA.. 43
11 Jednovýběrový t test... 50
12 Připojení do databází pomocí STATISTICA Query... 51
 Práce v rozhraní STATISTICA Query .. 52
13 Úprava načtených dat.. 54
 Proměnné a případy .. 54
 Transformace dat .. 55
 Použití filtru .. 56
14 Další grafické možnosti softwaru STATISTICA... 57
 Styly grafů .. 59
 Přidání stylů pro grafické objekty ... 61
 Automatické nastavení vzhledu grafu .. 62
15 Automatizace rutinních analýz ... 64
16 Vlastní menu v STATISTICA .. 65
17 Závěr ... 69
1 Úvod

Cílem manuálu je seznámení se základními možnostmi ovládání programu STATISTICA a rychle se zorientovat.

2 Spuštění programu STATISTICA

Při prvním spuštění nám dá program vybrat mezi 2 typy menu:

Po potvrzení **OK Klasické nabídky** se obrazovce se objeví rychlá navigace, kterou zavřeme a
máme zde okno aplikace *STATISTICA*:
Software **STATISTICA** umožňuje práci v zobrazení *Ribbon bar*, přepnutí do klasického zobrazení provedete přes záložku **Možnosti** v pravém horním rohu, nebo přes záložku **Zobrazit**.
3 Načtení souboru

Data pro vlastní analýzu můžeme získat několika způsoby:

- importem již uložených souborů různých formátů
- připojením k databázi – pomocí SQL dotazů lze pracovat s daty uloženými například v databázi Oracle, MS SQL Server, Sybase atd.
- otevřením tabulky Microsoft Excel v programu STATISTICA bez importu
- vložením dat do nové tabulky v programu STATISTICA
- sběrem dat on-line - pokud je systém napojen na měřicí zařízení, naměřené hodnoty se dají ihned zpracovávat.

Příklad – import dat z Excelu

V menu Soubor a možnost Otevřít vybereme soubor Scap108.xlsx

Při otevírání „Excelovských“ tabulek máme několik možností, jak k tabulkám přistupovat:
Importovat vybraný list do tabulky – nejčastější možnost – pokud máme více listů, tak upřesníme list, který chceme importovat – vybereme Scrap 108 (proměnné)

Data jsou načtena do tabulky softwaru STATISTICA (*.sta) stejně jako v případě načítání dat z textových souborů.

Pokud mám v původním souboru textové popisky, tak mě STATISTICA upozorní, zaškrtneme a pokračujeme:
4 Vytvoření základní výpočtů – popisné statistiky

Přes záložku Statistiky -> Základní statistiky/tabulky -> Popisné statistiky

Vybereme proměnné (pro více proměnných držím při pokliknutí Ctrl) – vybrali jsme proměnné, které reprezentují počet vad na součástce (Scrap).
Máme zde tabulku základních statistických charakteristik.

V souboru jsou naměřené chyby na konkrétních vyrobených dílech (sklíčka), díly vyrobil jeden stroj.

- KW1 reprezentuje období před vyčištěním stroje
- období KW2 reprezentuje počet chyb na dílu, který byl vyroben po vyčištění stroje.

- Průměrný počet chyb na součástce se po vyčištění stroje snížil z 32 na 25.
- Počet chyb také o něco méně kolísá, což reprezentuje menší směrodatná odchylka 9,1 oproti 10,78.

Vyvoláme dole panel analýz a přepneme na kartu detaily:

Kde si lze v případě potřeby zaškrtnou další popisné statistiky:
5 Vytvoření grafu

5.1 Histogram

Přes Grafy -> 2D grafy -> Histogramy

Vybereme proměnné pro obě období:

5.2 Krabicový graf (Box Plot)

Tímto grafem si vizuálně porovnáme oba naše vzorky, tedy před vyčištěním a po vyčištění stroje:

Přes Grafy -> 2D grafy -> Krabicové grafy
Zvolíme *Vícenásobný* a opět vybereme proměnnou:

Z grafu je vidět, že v období po vyčištění stroje (*KW2*) došlo k celkovému poklesu variability souboru (krabička je niž):

V souboru je jedno odlehlé pozorování, které bylo naměřené v období KW1, je třeba zkontrolovat, jestli nějde o chybnou hodnotu operátora.
5.3 Regulační diagram

Pojďme se na proměnnou KW1 Scap (I08) podívat na regulačním diagramu, přes Statistiky -> Průmyslová statistika -> Diagramy pro řízení kvality

Vybereme diagram individuálních hodnot:

A získáme následující diagram:
Vidíme, že hodnota 60 nepřekročila meze diagramu, stejný postupem zvolíme diagram, který sleduje meze průměrných hodnot:

6 Uložení práce

6.1 Uložení celé rozdělené práce

Výstupy v souboru lze ukládat několika způsoby, začneme projektem, který je dobré použít, pokud chci uložit kompletní rozdělanou práci v softwaru STATISTICA:

Přes Soubor -> Uložit projekt jako…
Uložíme soubor, ve kterém je všechno, co máme právě v softwaru otevřené. Tento soubor následně otevřeme přes **Soubor -> Otevřít** nebo dvojklik přímo na soubor.

6.2 Uložení tabulky v softwaru

– ve **stromu sešitu STATISTICA** klikneme přes právě tlačítko na tabulku Popisných statistik a zvolíme **Ulož položku(-y) jako…**

a zvolíme **Ulož položku(-y) jako…**
A tabulku si uložíme třeba ve formátu Excelu.
6.3 Uložení grafu

V příslušném grafu kliknu pravým tlačítkem

A opět vyberu formát pro uložení:
6.4 Přidání výstupů do Microsoft Word

Nejprve označíme (při stisknutém Ctrl) výstupy, které chceme přidat do MS Word a klikneme na Přidat do protokolu:

A po té klikneme na Přidat do MS Word:

Celý proces se dá automatizovat viz kapitola 8.1.
7 Další možnosti načtení souborů

Při načítání z souboru typu Excel jsme si zatím ukázali pouze jednu možnost, nyní se podíváme na možnost *Importovat všechny listy do sešitu*

- *Importovat všechny listy do sešitu*
 Při této možnosti můžeme podrobně nastavit pouze následující parametry (nikoli už velikost oblasti dat každého listu – tu STATISTICA určí automaticky):

V případě, že listy obsahují i textové proměnné, je uživatel upozorněn na výskyt sloupce s textovými popisky:
Tuto informaci je třeba vzít na vědomí (tlačítko **Importovat jako textové popisky**) a to buď u každé proměnně obsahující textové hodnoty zvláště, anebo zaškrtnutím možnosti **Provést pro všechny číselné proměnné, pokud jsou data textová** odsouhlasíme možné textové popisky u všech proměnných.

Možnost načíst všechny listy do sešitu načte ty listy excelovské tabulky, ve kterých jsou uložena nějaká data, do sešitu **STATISTICA (.stw)**, aktivní list Excelu je vybrán jako **aktivní vstup** i ve **STATISTICA**, tj. případné grafy a výpočty probíhají nad tímto listem, pokud uživatel nezvolí jinou tabulku jako aktivní vstup – aktuální aktivní vstup je odlišen červeně orámovanou ikonou:

- **Otevřít jako pracovní sešit Excelu**

Pokud budeme chtít využívat funkce dostupné v Excelu a další nástroje aplikace Excel, je vhodné otevřít soubor jako pracovní sešit Excelu. V horní části menu je přístup k menu aplikace **STATISTICA** a v případě novější verze aplikace Excel je pod ní zobrazen i pás karet s nástroji Excelu. U starších verzí Excelu tento pás zobrazen není, nicméně do buněk sešitu lze vkládat vzorce využívající funkce Excelu v obou případech. Oblast dat, se kterou chceme pracovat, definujeme při prvním spuštění grafu nebo analýzy. Je dobré nedefinovat maximální velikost oblasti, se kterou chceme pracovat, neboť je následně použita jako default i pro další spouštěné grafy a analýzy ve **STATISTICA**.
7.1 Otevření textového souboru

V menu Soubor zvolíme možnost Otevřít... a pomocí procházení úložišť osobního počítače nadefinujeme cestu k textovému souboru (např. s koncovkou .txt nebo .csv). Potvrdíme OK a zobrazí se následující dialog:

Ten necháme beze změny a opět potvrdíme OK. Definici, jak přesně chceme k obsahu textového souboru přistupovat, upřesníme prostřednictvím následujícího dialogu:

V dolním okně dialogu se automaticky zobrazuje náhled souboru tak, jak bude vypadat po načtení do STATISTICA, jednotlivé proměnné (sloupce) jsou odděleny svislými čarami. Pokud je textový soubor tvořen automaticky – jde například o výstup z nějakého programu – a na úvod dokumentu se zobrazuje hlavička identifikačních údajů a potom teprve samostatná data, máme možnost nastavit přeskočení prvních n řádků souboru (volba Počet případů k přeskočení). Dále je důležité si uvědomit, zda proměnné mají nějaký název – většinou chceme načíst tyto názvy jako záhlaví tabulky, proto i defaultní volba pro načtení souboru je Vzít jména proměnných z prvního řádku.

Zkontrolujeme také oddělovač desetinných míst, STATISTICA používá nastavení oddělovače pro Windows, tj. pokud otevíraný soubor vznikl například ve skriptu pro Linux systém, může být kódování desetinných míst tohoto souboru odlišné.

Po nastavení všech parametrů potvrdíme *OK*. Výsledkem je otevření tabulky formátu *.sta* ve *STATISTICA*:
8 Správce výstupů

8.1 Výstup do Microsoft Word / do protokolu STATISTICA

V programu STATISTICA můžeme nastavit, v jakém formátu se budou ukládat výstupy. Ze základní nabídky vybereme Nástroje - Možnosti…. Otevře se dialog Možnosti, ve kterém přejdeme na záložku Správce výstupů:
Můžeme zvolit některé z těchto možností:

- **výstup do Microsoft Word** – výstupy se vkládají do dokumentu Microsoft Word, a mohou tak být jednoduše sdíleny s dalšími spolupracovníky.
9 Další příklady analýzy dat

9.1 Příklad – výpočet popisných statistik

Na otevřené tabulce Tělesné míry.xls si ukážeme výpočet popisných statistik pro proměnné váha a výška u mužů. Přejdeme tedy na list muži a ze základní nabídky vybereme Statistiky – Základní statistiky/tabulky.

Poznámka:
Pokud bychom pracovali se vstupními daty v tabulce formátu *.sta, dostali bychom výše uvedenou nabídku přímo ze základní nabídky Statistiky – Základní statistiky/tabulky.
Nechme vybrané **Popisné statistiky** a kliknutím na **OK** přejděme do okna vlastní analýzy:

Dialog obsahuje řadu záložek s nástroji pro výpočet různých popisných statistik a pro tvorbu grafů. Pokud se však nechceme zabývat podrobným nastavením, stačí kliknout na tlačítko **Výpočet** a program *STATISTICA* nás provede kroky potřebnými k výpočtu základních popisných statistik.

Nejprve vybereme proměnné **váha** a **výška** (stačí přes tyto dvě proměnné přejet myší při stisknutém levém tlačítku):
Výsledky můžeme snadno doplnit také o grafické výstupy. Obnovíme dialog **Popisných statistik**, který se minimalizoval na panel analýz a klikneme na tlačítko **Souhrn:Grafy**. Výsledek je na následujícím obrázku:

Rychle tak získáme pohled na data pomocí histogramu, normálního pravděpodobnostního grafu a krabicového grafu. Širokou nabídku dalších popisných statistik a grafických pohledů na data nalezneme na jednotlivých záložkách dialogu **Popisných statistik**.

Pro další příklad si výstup s výsledky dosavadních analýz nechme otevřený. Ostatní okna na ploše v programu **STATISTICA** můžeme zavřít.
Rozdělení spojitě proměnné dle kategorie

Na kartě Detailní výsledky v dialogu Popisné statistiky: Statistiky → Základní statistiky/tabulky → Popisné statistiky → anal. Skupiny:

Kde vybereme proměnnou stupeň kouření (kouř) a charakteristiky polohy a variability tak vypočteme zvlášť pro jednotlivé kategorie.
Kompletní řešené příklady na char. variability a polohy, které ukážou další možnosti softwaru STATISTICA v této oblasti lze najít v našich newsletterech:

- Newsletter 20/08/2012
- Newsletter 17/09/2012
- Newsletter 15/10/2012

http://www.statsoft.cz/o-firme/archiv-newsletteru/
9.2 Analýza způsobilostí procesu

Úvod
Otevřeme si datový soubor Pistons CZ.sta.

Analýza způsobilostí procesu a výpočet indexů způsobilostí procesu lze provádět v modulu Analýza procesů, který je dostupný z nabídky Statistika – Průmyslová statistika & Six Sigma. Po otevření tohoto modulu se zobrazí úvodní panel.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.

Odpovědět na tyto otázky je možné s využitím statistických technik. Vrátíme-li se k našemu příkladu s pístními kroužky, ze vzorku určité velikosti můžeme odhadnout směrodatnou odchylku procesu, tj. směrodatnou odchylku průměru kroužků. Pokud je rozdělení hodnot normální, je možné poměrně snadno odvodit podíl kroužků, které budou specifikačním mezí.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.

Odpovědět na tyto otázky je možné s využitím statistických technik. Vrátíme-li se k našemu příkladu s pístními kroužky, ze vzorku určité velikosti můžeme odhadnout směrodatnou odchylku procesu, tj. směrodatnou odchylku průměru kroužků. Pokud je rozdělení hodnot normální, je možné poměrně snadno odvodit podíl kroužků, které budou specifikačním mezí.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.

Předpokládejme, že proces je statisticky zvládnutý (což jsme ověřili pomocí regulačních diagramů). Nyní však vyvstává otázka, do jaké míry náš proces v dlouhodobém měřítku odpovídá technickým specifikacím nebo obchodním cílům. Pokud např. vyrábíme pístní kroužky, chtěli bychom znát, kolik z nich má rozměr spadající dovnitř specifikačních mezí. Obecněji řečeno, otázkou je, jak způsobilý je proces (nebo dodavatel) produkovaný výrobky vyhovující specifikacím.
Potenciální způsobilost (Cp)

Nejjednodušší a nejpřímější indikátor způsobilosti procesu.

Je definován jako poměr specifikačního rozsahu a rozsahu procesu. Tento index se dá vyjádřit jako:

\[C_p = \frac{USL - LSL}{6\sigma} \]

Volně řečeno, tento index vyjadřuje „jak velká část“ křivky normálního rozdělení se vejde do specifikačních mezí (za předpokladu, že je proces vycentrován).

Poměr způsobilosti (Cr)

Tento index je vlastně ekvivalentní indexu \(C_p \); je roven převrácené hodnotě, tj. \(C_r = \frac{1}{C_p} \). Tento index se dá tedy slovně popsat jako podíl specifikačního rozsahu, který je využíván vlastním procesem.

Dolní/horní potenciální způsobilost (Cpl, Cpu)

Hlavní nevýhodou indexu \(C_p \) (nebo \(C_r \)) je to, že poskytuje nesprávné informace, pokud proces není vycentrován kolem nominální hodnoty (TS). „Excentricitu“ procesu je možné vyjádřit pomocí průměru procesu. Nejdříve je možné vypočítat dolní a horní potenciální způsobilost procesu:

\[
\begin{align*}
C_{pl} &= \frac{\mu - LSL}{3\sigma} \\
C_{pu} &= \frac{USL - \mu}{3\sigma}
\end{align*}
\]

Je zřejmé, že pokud obě hodnoty nejsou shodné, proces není vycentrován.

Korekce (k)

Je možné upravit index \(C_p \) tak, aby reflektoval fakt, že proces není vycentrován. Můžeme vypočítat hodnotu korekce \(k \):

\[
k = \frac{TS - \mu}{\frac{1}{2} (USL - LSL)}
\]

Tato korekce vyjadřuje excentricitu (nominální hodnota mínus průměr) vztaženou ke specifikačnímu rozsahu.

Index Cpk

Úpravou indexu \(C_p \) pomocí korekce k můžeme vypočítat index \(C_{pk} \), který počítá s tím, že proces není vycentrován.

\[C_{pk} = (1 - k)C_p \]

Pokud je proces vycentrován, pak je k rovno nule a \(C_{pk} \) je shodný s \(C_p \). Pokud se ovšem proces vzdálí od nominální hodnoty, \(C_{pk} \) je menší než \(C_p \).
Potenciální způsobilost II (Cpm)

Jedna z nedávných úprav indexu Cₚ je zaměřena na odstranění vlivu (náhodného) nevycentrování. Můžeme vypočítat alternativní hodnotu směrodatné odchylky (σ₂) z n jednotlivých pozorování xᵢ ve vzorku jako:

\[\sigma₂ = \frac{\sum_{i=1}^{n} (xᵢ - TS)^2}{n - 1} \]

Poté můžeme tento alternativní odhad směrodatné odchylky použít k výpočtu indexu Cₚ stejně jako předtím; tento nový index ovšem budeme označovat jako Cₚm.

Výkonnost procesu vs. způsobilost procesu

Monitorujeme-li proces prostřednictvím regulačního diagramu, bývá často užitečné vypočítat také indexy způsobilosti. V případě, že data sestávají z několika vzorků (jako je tomu u regulačních diagramů), je možné vypočítat dva různé odhady variability dat. Jedním z nich je klasická směrodatná odchylka všech pozorování – v tomto případě budeme ignorovat fakt, že data pocházejí z více vzorků. Druhou možností je odhadovat inherentní variability procesu z variability uvnitř jednotlivých vzorků.

Pokud použijeme k výpočtu standardních indexů celkovou variabilitu, říká se výsledným indexům indexy výkonnosti (protože popisují vlastní výkon procesu). Indexy vypočtené pomocí inherentní variability (směrodatné odchylky uvnitř vzorků) se obvykle nazývají indexy způsobilosti (protože popisují inherentní způsobilost procesu). Pro datové soubory, které obsahují více vzorků, vypočte STATISTICA indexy způsobilosti (Cₚ, Cₚk, ...) i výkonnosti (Pₚ, Pₚk, ...).

Toleranční meze

Než se na počátku 80. let rozšířilo používání indexů způsobilosti, byl pro odhad vlastností výrobního procesu obvyklou metodou výpočet a zkoumání tolerančních mezí. Postup byl následující. Předpokládejme, že sledovaný znak jakosti je v celé populaci výrobků normálně rozdělený. Můžeme provést intervalový odhad, který nám s určitou spolehlivostí zajistí, že určitá část populace bude ležet v odhadnutém intervalu. Jinými slovy, pokud máme dán o:

1. velikost vzorku (n),
2. průměr procesu,
3. směrodatnou odchylku procesu (sigma),
4. hladinu spolehlivosti a
5. procento populace, které chceme do intervalu zahrnut,

můžeme vypočítat toleranční meze, které vyhoví všem parametrům. Modul Analýza procesů poskytuje uživateli možnost pro stanovení těchto parametrů a pro výpočet tolerančních mezí. Najdete zde i možnosti pro výpočet neparametrických tolerančních mezí, které nejsou založeny na předpokladu normality.

Ohodnocení normality a prokládání rozdělení
Představme si, že vyrábíme pístní kroužky. Specifikace říkají, že jejich průměr by měl být 74.0 ± 0.05 mm.

Z procesu jsme odebrali 25 vzorků po 5 pozorováních (hodnoty jsou uloženy v souboru Pistons CZ.sta). Checeme zjistit, jak způsobilý náš proces je.

Protože standardní indexy způsobilosti jsou založeny na předpokladu normality, měli bychom ověřit, zda data opravdu mají normální rozdělení. Poznamenejme ovšem, že data je možné proložit i dalšími spojitými rozděleními, včetně beta, exponenciálního, rozdělení extrémních hodnot, gama, log-normálního, Rayleighova, či Weibullova a výpočty indexů lze založit na směrodatné odchylce procesu odhadnuté z těchto distribucí. Máme možnost odhadnout parametry všech rozdělení a porovnat, jak dobře odpovídají datům.

Např. prostřednictvím tlačítka Otevři data na úvodním panelu modulu Analýza procesů otevřeme soubor Pistons CZ.sta. Zvolíme možnost Analýza způsobilosti & toleranční intervaly, zdrojová data a klikneme na OK.

(Všimněte si, že na obrázku výše je zvolena záložka Podskupiny).

Klikněte na tlačítko Proměnné a zvolte proměnnou Velikost v poli Proměnné pro analýzu a Vzorek jako grupovací proměnnou.
Klikněte na **OK**. Všechna ostatní nastavení nechte na jejich implicitních hodnotách a přepněte se na záložku **Rozdělení**.

Klikněte na tlačítko **Všechna rozdělení (výpočet parametrů a K-S d)**.

Jak je vidět, proložení dat normálním rozdělením se jeví jako nejlepší. Můžeme tedy aplikovat standardní indexy způsobilosti procesu. Někdy ovšem datům lépe odpovídají jiná rozdělení. V těch případech STATISTICA odhadne sigma procesu z tohoto rozdělení. Pak se ale musí dát pozor při interpretaci těch indexů, které zahrnují korekci na excentricitu procesu (protože některá z těchto rozdělení jsou velice šikmá).

Indexy způsobilosti procesu

Vraťte se do dialogu specifikace analýzy
Abychom mohli indexy způsobilosti počítat, je bezpodmínečně nutné nejprve zadat hodnoty technických specifikací. Do pole *Nominální* vložte 74 a do pole *Delta* hodnotu 0,05.

Klikněte na tlačítko **OK** a stiskněte **Shrnutí**.
STATISTICA vytvoří několik tabulek (pro indexy způsobilosti a pro indexy výkonnosti). Nyní se zaměříme jen na indexy způsobilosti:

Tato tabulka obsahuje specifikace a různé indexy způsobilosti.

- Protože indexy způsobilosti jsou vyšší než 1, proces se zdá být způsobilý při splňování našich požadavků.

Jinými slovy, produkujeme méně než 1% neshodných výrobků.
Ve skutečnosti proces využívá méně než 60% specifikačního rozsahu (74.0 +/- 0.05 mm), jak je vidět z hodnoty indexu CR. Využíváme zhruba 58% stanoveného rozsahu tolerance.

Také se zdá, že proces je vycentrován kolem hodnoty 74, protože hodnota indexu Cpk je stále poměrně vysoká (1,66317) a necentrální korekce k je velice blízká nule:

Je možné také provést analýzu očekávaného a pozorovaného počtu naměřených hodnot ležících mimo specifikační meze viz níže:
Na záložce **Detaily, normální** klikněte na tlačítko **Počet mimo specifikace**.

Tato tabulka obsahuje údaje o počtu a procentu pozorovaných jednotek ve vzorku, které padnou mimo specifikační meze (LSL, USL). Současně je uveden také počet a procento jednotek, u kterých se očekává, že padnou mimo specifikační meze, podle normálního rozdělení. Pro naše data ze specifikací nevypadlo ani jedno pozorování. Podle normálního rozdělení s daným průměrem procesu a směrodatnou odchylkou bychom mohli očekávat, že pouze 0,0008% nebude odpovídat naším specifikacím.

Souhrn analýzy způsobilosti je také možné nechat zobrazit graficky v podobě histogramu. Klikněte na tlačítko **Souhrnný histogram**.
Výše uvedený histogram zobrazuje rozložení naměřených hodnot společně s proloženou křivkou normálního rozdělení (pro očekávané hodnoty). Současně jsou v histogramu vyznačeny specifikační meze (LSL a USL) a interval ±3 sigma. Titulek grafu obsahuje hlavní indexy způsobilosti procesu.

Než byly do praxe uvedeny indexy způsobilosti, používaly se k ohodnocení charakteru výrobního procesu toleranční intervale. Při dané velikosti vzorku (n), průměru procesu, směrodatné odchylce procesu (sigma), hladině spolehlivosti a podílu populace, který má spadat do tolerančního intervalu, je možné vypočítat toleranční meze. Stačí se přepnout na záložku Toleranční meze, určit výše zmíněné parametry (v našem případě změníme např. údaj v poli Zahrnuto procent na 90%) a kliknout na tlačítko Toleranční meze, normální rozdělení.

Kdybychom měli stručně shrnout údaje v tabulce, mohli bychom říci asi toto: jsme si na 95% jisti, že 90% populace bude ležet mezi hodnotami 73,9826 a 74,0198. Tyto hodnoty jsou popsány jako Dolní a Horní toleranční mez.
10 Ověření normality v softwaru STATISTICA

K ověřování normality systém STATISTICA poskytuje následující nástroje:

1. **Histogram** – vytvoříme histogram sledované proměnné a vizuálně ho porovnáme s normálním proložením:
Doplněkem si lze zaškrtnou Shapiro-Wilkův test pro otestování normality, v tomto konkrétním případě jsme nezamítli nulovou hypotézu o normalitě (P (0,2>0,05):

Dvojklikem do grafu vyvoláme dialog **Možnosti grafu** a graf si upravíme:
Nevyváženy počet dat v jednotlivých intervalech nemusí nutně znamenat významné odchylky od normality, a proto je vhodnější použít kvantilové grafy:

2. **Normální pravděpodobnostní graf** – jde o bodový graf, který porovnává kvantily spočtené z dat (osa x) s kvantily standardizovaného normálního rozdělení (osa y). Pokud veličina má normální rozdělení, leží body grafu na přímce. Tyto grafy lze vytvořit z nabídky Statistika - Základní statistiky/tabulky - Popisné statistiky - Pravděpodobnostní & bodové grafy. Kromě Normálního pravděpodobnostního grafu STATISTICA nabízí ještě Polo-normální pravděpodobnostní graf (obsahuje jen kladné hodnoty normálního rozdělení) a Normální pravděpodobnostní graf s odstraněným trendem (odstraněn lineární trend).
Nebo přes záložku **Grafy:**

Normální pravděpodobnostní graf obsahuje možnost zaškrtnout také Shapiro-Wilkův test:

Výsledný graf se statistikou SW testu:

Zde nezamítáme nulovou hypotézu o normalitě $P (0,69) > 0,05$.
3. **Testy**

Kromě vizuálního ohodnocení jsou k dispozici také testy, které přímo s určitou
pravděpodobností otestují, zda jsou data výběrem z normálního rozdělení, či nikoli.
STATISTICA nabízí testy, např. Shapirův – Wilksův, Kolmogorovův – Smirnovův a
Lillieforsův.

Přes Statistiky -> Základní statistiky a tabulky -> Popisné statistiky -> karta Normalita:

Jako nejjednodušší se doporučuje používat test Shapirův – Wilksův. Kolmogorovův –
Smirnovův test se nedá použít přímo, protože předpokládá, že ověřujeme shodu našich dat
s rozdělením, u kterého známe střední hodnotu a rozptyl. Ty se však většinou odhadují z dat
samotných. Pro tento případ lze použít Lillieforsův test, který je modifikací Kolmogorovova –
Smirnovova testu.
Klávesa *F1* v políčku pro zaškrtnutí příslušného testu vyvolá nápovědu k tématu a doporučení k jednotlivým testům:

Shapiro-Wilkův test je zde upraven i pro relativně velké vzorky. Po zaškrtnutí testu mám na výběr dvě možnosti reprezentace výsledku testu:

V modulu *Statistika - Prokládání rozdělení* se počítá test chí-kvadrát. Oboustranný či jednostranný T-test pro dva výběry pouze na základě statistik (průměry, směrodatné odchylky a rozsahy výběrů) je dostupný přes volbu *Základní statistiky a tabulky – Testy rozdílů: r, %, průměry.*

Následující příklad slouží k ověření normality vybraných veličin:

Příklad - Normalita a důležitost náhodného výběru

Úkol: Vytvoříme novou tabulku s proměnnou, která bude mít normální rozdělení. Ověříme její vlastnosti a otestujeme, zda jde skutečně o normální rozdělení. Vytvoříme náhodný a nenáhodný výběr a porovnáme výsledky. Poté v souboru *SpotřebaAut.sta* ověříme normalitu u proměnných *Zrychlení* a *Hmotnost.*

1. Vytvoříme novou tabulku o rozměrech *1s* krát *1000* ř. Zvolíme *Soubor - Nový - Tabulka.* Počet proměnných *1* a Počet případů *1000.*

2. Poklepáním na záhlaví se otevře dialog *Proměnná 1,* kam zadáme informace o proměnné: nazvěme ji Normální a do pole *Dlouhé jméno* veškeré funkci, která proměnnou vyplní. (Viz př. 2, bod 3.) *STATISTICA* disponuje funkcí *RndNormal* s parametrem *x,* který znamená směrodatnou odchylku. Pokud je zaškrtnut Průvodce funkcemi, po napsání *=* a počátečního písmene funkce program nabízí různé možnosti. Můžeme poklepát na zvolenou funkci a ta se sama veškeré do pole. Poté si můžeme zvolit směrodatnou odchylku a po kliknutí na *OK* se vygeneruje 1000 náhodných čísel z normálního rozdělení o střední hodnotě *0* a zadané směrodatné odchylce.

4. Na záložce Detaily dialogu Základní statistiky a tabulky - Popisné statistiky kromě nabídnutých možností zaškrtněme ještě Šikmost a Špičatost. a volme Výpočet: Popisné statistiky. V tabulce vidíme, že rozdělení je symetrické (šikmost je přibližně 0) a normálně špičaté (špičatost také přibližně 0).

7. Otevřeme soubor SpotřebaAut.sta.

11 Jednovýběrový t test

Přes Statistiky -> Základní statistiky/tabulky -> t-test, samost. vzorek se pak dostaneme k jednovýběrovému t-testu, kde definujeme referenční konstantu a klikneme na Výpočet:

Test je signifikantní, zamítáme nulovou hypotézu: \(H_0: \mu = \mu_0 = 100m \)

Skutečná průměrná naměřená vzdálenost přístroje se s 95% P nachází v intervalu:

Test průměrů vůči referenční konstantě (hodnotě) (OrientaciMerení)

<table>
<thead>
<tr>
<th>vzdalenost</th>
<th>Int. spolehl. -95.000%</th>
<th>Int. spolehl. +95.000%</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,0005</td>
<td>99,99</td>
<td>100,02</td>
</tr>
</tbody>
</table>

Je rozdíl také prakticky významný? Má přístroj sys. chybu?

Kompletní řešený příklad na tento test lze najít v našem newsletteru z 08/01/2013 StatSoft ACADEMY:
12 Připojení do databází pomocí STATISTICA Query

STATISTICA umožňuje přímé připojení do všech standardních databází přes konvence OLE DB a ODBC. Připojení probíhá v několika fázích:

Přes Soubor - Získat externí data - Vytvořit dotaz se dostaneme do okna rozhraní STATISTICA Query:

Práce v rozhraní STATISTICA Query

V rozhraní STATISTICA Query lze pracovat dvěma způsoby. První způsob využívá grafický režim a umožňuje práci i těm, kteří potřebují z databáze získávat konkrétní data, ale nemají potřebné znalosti dotazovacího jazyka SQL. Grafický režim funguje na principu „Táhní a pust“. V levé části hlavního okna vidíme jednotlivé tabulky v databázi (na obrázku je to např. ADSTUDY), které lze přetáhnout do hlavního okna v pravé části menu. Kliknutím na jednotlivé názvy polí tabulky v hlavním okně (ID, GENDER…) vybereme, která pole z databáze chceme nahrát a automaticky tak již vytváříme SQL dotaz, který můžeme ve spodní části okna také nechat zobrazit (Příkaz SQL). Tlačítko Náhled dat umožňuje sledovat vybraná data.

Spojení tabulek je převzato z databáze, anebo jej lze nadefinovat přímo v prostředí STATISTICA Query, a to přetažením kurzoru z jedné tabulky na druhou (na konkrétním parametru, který slouží jako primární klíč), nebo přes záložku Spojení – Přidat. Možnost přidat spojení vyvoláme také kliknutím pravého tlačítka myši ve volném prostoru hlavního okna. Kliknutí ve spodní části rozhraní STATISTICA Query (viz následující obrázek) vyvoláme možnost přidání doplňkových omezení pro jednotlivé parametry.

![Diagram STATISTICA Query](image_url)

Defaultní nastavení STATSITICA je načítat data do aktivní tabulky dat, pokud chcete načíst data do nové prázdné tabulky, vyberte tuto možnost v následujícím dialogu:
13 Úprava načtených dat

Proměnné a případy

Přidání a odebrání proměnných provedeme následujícím způsobem: V záhlaví tabulky klikneme pravým uchem myši a zobrazíme dialog, v němž můžeme vybrat možnost Odebrat proměnné nebo Přidat proměnné.

Při přidávání proměnných se zobrazí dialog, v němž uživatel specifikuje počet přidávaných proměnných, název proměnné, ze kterou se mají nové proměnné vložit, jméno proměnné (Pokud přidáváme více než jednu proměnnou, bude zadaný název použit u všech těchto proměnných – pro odlišení bude ukončen pořadovým číslem přidávané proměnné. Přejmenování proměnných můžeme nicméně provést následně.), typ hodnot proměnné a způsob zobrazení jejich hodnot. Rozlišujeme čtyři typy hodnot proměnných, a sice:

- **Double**
 Defaultní typ. Využívá se pro numerické hodnoty a umožňuje ukládat 64 bitová reálná čísla s přesností na 15 desetinných míst. Rozsah přibližně od \(-1,7 \times 10^{308}\) do \(1,7 \times 10^{308}\). Kód chybějících dat je -999999998.

- **Integer**

- **Byte**
 Celá čísla v rozmezí 0 až 255, nezve vložit desetinná čísla, každé číselné hodnotě lze přiřadit textový popisek. Velikost 1 byte.

- **Text**
Textové řetězce s neomezenou délkou bez číselné reprezentace. Pro účely numerických výpočtů jsou různým řetězcům přiřazeny *ad-hoc* různě číselné hodnoty. Kód chybějícího dat je *prázdný řetězec*.

Přiřazením vhodného typu můžeme šetřit místo nutné pro uložení datové tabulky v paměti počítače.

Do okna dialogu pro přidání proměnných s názvem *Dlouhé jméno* je možné vkládat matematické, statistické, logické, textové ale i jiné funkce, jejichž vstupem jsou ostatní proměnné tabulky, nicméně vkládání těchto funkcí doporučujeme provádět až po přidání proměnných. Pokud se funkce odkazují na proměnné, které se v tabulce vyskytují až za přidávanými proměnnými, nejsou odkazy pomocí písmene v a čísla sloupce proměnně jednoznačné. Při přidávání případů je potřeba zadať, jen kolik řádků chceme do tabulky přidat a za který řádek se mají vložit.

Transformace dat

Pro transformaci dat je ideální nadefinovat novou proměnnou, která bude funkcí proměnných původních. V záhlaví tabulky klikneme dvakrát na název nové proměnné a v dialogu podobném dialogu pro přidávání proměnných klikneme v dolní části na tlačítko Funkcemi.

Zobrazí se *Prohlížeč funkci*, kde jsou dostupné všechny funkce, které jsou ve STATISTICA definovány. Můžeme je vybírat v levé části okna prohlížeče podle jejich typu, v pravé části okna potom vybereme konkrétní funkci a v dolní části okna se zobrazí návěstě k vybrané funkci (popis toho, co funkce dělá a jaké má vstupní parametry). Odkaz na jiné proměnné tabulky se tvoří buď použitím názvu proměnné (pokud název obsahuje mezery, je třeba ho uvádět v uvozovkách) anebo užitím písmena v a čísla sloupce
proměnné (například v8 odkazuje na proměnnou v osmém sloupci tabulky). Výraz v0 označuje pořadová čísla řádků (případů). Zápis transformace pro novou proměnnou může vypadat například takto:

\[
\text{Dlouhé jméno} \text{ (popis či výraz s funkcemi): } \quad \text{Prv. funkce: } \quad \text{Prv. funkce: }
\]

\[
= \log_2(v2) + v3
\]

Potvrďme volbu tlačítkem OK, STATISTICA zobrazí ještě dialog, kde odsouhlasíme přepočítání hodnot nové proměnné:

Použití filtra
Nejpodhlednější je nejspíš použití filtra při samotném volání analýzy nebo tvorbě grafu. V pravé části některého z úvodních dialogů je umístěno tlačítko

SELECT CASES.

Do analýzy budou zahrnuty případy, pro které je splněna podmínka, že hodnota proměnné ve třetí sloupci je větší než 1, a vyloučeny budou řádky 1 až 6 a dále ty případy, které sice splňují podmínku V5 > 1, ale u nichž je hodnota páté

proměnné větší než 12.
14 Další grafické možnosti softwaru STATISTICA

Kompletní nabídka grafů je k dispozici ze základní nabídky Grafy.

Software STATISTICA obecně poskytuje bohaté možnosti, co se týče grafů. Ve verzi STATISTICA 10 a vyšší lze v porovnání se staršími verzemi programu nově upravovat i průhlednost oblastí nebo značek v grafech a tím získat například následující kvalitní výstup pro prezentaci:

Ze zajímavých grafů, kterými STATISTICA disponuje, uveďme ikonové grafy, které slouží pro zobrazení a porovnání jednotlivých případů (řádků tabulky) podle měřených veličin (proměnných, sloupců tabulky),
dále tzv. **bag ploty**, které jsou dvourozměrnou variantou krabicových grafů. Umožňují identifikaci odlehlých porozování vzhledem ke dvěma dimenzím současně,

a grafy chybějících hodnot, které uživatele rychle upozorní na ty řádky nebo proměnné, které obsahují větší množství chybějících dat (body vynesené do grafu představují právě chybějící údaje pro proměnnou danou osou x a případ uvedený na ose y):
V záložce **Soubor - Otevřít příklady** ve složce **Datasets** vybereme soubor *Adstudy.sta*. V záložce **Grafy - 2D Grafy - Bodové grafy** zvolíme MEASURE1 jako proměnnou X a MEASURE2 jako proměnnou Y.

Z grafu je vidět, že obě měření jsou vzájemně nezávislá. Nyní graf přizpůsobíme podle potřeby uživatele, například:

Dvojklikem do prázdného okna grafu vyvoláme nabídku **Možnosti grafu**, kde zvolíme možnost **Okno** a změníme barvu vnitřního pozadí na světle žlutou a vnějšího pozadí na světle modrou.

Použití grafů je zcela intuitivní, proto se v dalším textu budeme věnovat pouze pokročilé práci s grafickými styly.
Dále v záložce **Spojnice - Obecné** změněme značku z prázdného modrého kroužku na plný černý čtverec. Nyní máme bodový graf, který odpovídá našim představám, a jehož styl chceme opakovaně využívat i pro další bodové grafy.

V levém horním rohu v záložce **Grafické styly** přes pravé tlačítko myši volíme možnost **Uložit jako**...

Styl grafu pojmenujeme, název by měl indikovat i typ grafu, protože použití stylu bodového grafu například na histogram může mít nežádoucí výsledek. Zvolíme tedy název **Bodový graf** *Grafika 1*.
Při tvorbě dalšího bodového grafu potom v záložce **Vzhled – Styl grafu** vybereme právě uložený styl.

Pro již vytvořený graf lze také nastavit konkrétní styl, a to výběrem z rolovacího seznamu **Grafické styly** umístěném v levém horním rohu okna sešitu s grafem.

Přidání stylů pro grafické objekty

Ve **STATISTICA** lze ukládat i nastavení objektů, jako jsou šipky, obdélníky, ovály a jiném uživatelem dokreslené automatické tvary, které lze upravit skrze nastavení dostupná v panelu **Nástroje grafu**.

Jednotlivé atributy jsou označeny jako (A), skupiny atributů jako (AA) a skupiny vlastností symbolem (S). V grafu upravme například nadpis – dvojklikem na příslušný nadpis zobrazíme okno pro jeho editaci (zde provedeme změnu barvy, nastavení velikosti a fontu písma, atd.). Vzhled objektu nadpis budeme chtít dále opakovaně využívat. Klikneme na tlačítko **Styly**… dále klikneme na tlačítko **Více**… Klikneme myší na tlačítko a třemi tečkami vedle názvu stylu v okně **Styly pro nadpis** a vybereme možnost **Uložit jako**…
Případně volba *Uložit jako výchozi* způsobí, že námi upravený styl bude použit pro tento objekt u všech nově vytvářených grafů. Pro aplikaci uživatelem definovaného stylu na konkrétní objekt v novém grafu vybereme ze stejné roletky jako výše dříve uložený styl.

Pokročilejší uživatelé mohou definovat a používat grafické styly pro změnu jednotlivých grafických vlastností nebo hierarchicky organizovaných skupin vlastností, a to pomocí dialogu úprav *Všechny možnosti*.

Automatické nastavení vzhledu grafu
V záložce Grafy - 2D Grafy - Histogram vybereme ze souboru *Adstudy.sta* jako závislé proměnnou *MEASURE01* a pro kategorizaci vybereme proměnnou *GENDER*. Dvojklikem do prostoru grafu vyvoláme dialog *Možnosti grafu* a v dolní části dialogu zaškrtneme *Zaznamenat makro*.

15 Automatizace rutinních analýz

Následující postup ukazuje tvorbu jednoduchého makra pro automatizaci rutinních činností. Software STATISTICA umožňuje vytvářet různé dávkové analýzy pomocí integrovaného jazyka STATISTICA Visual Basic (SVB), který lze využít ke zjednodušení prováděných úloh různé obtížnosti, od jednoduchých maker až po pokročilé projekty. Pomocí jazyka SVB může uživatel přístupovat prakticky ke každému funkčnímu prvku systémů a tedy i využívat vlastní rozšíření systému.

Všechny postupně prováděné analýzy lze snadno automaticky zaznamenávat pomocí záznamu makra. Tímto jednoduchým záznamem potom zcela automatizujeme často opakující analýzy, a to i bez znalosti programování. **Postup tvorby záznamu makra je následující:**

Před vlastním spuštěním záznamu je třeba zvážit, zdali chceme provádět automatizovanou analýzu vždy nad již načtenou aktivní tabulkou STATISTICA, anebo bude načtení aktuálních dat také součástí kódu. V druhém ze zmíněných případů začneme nahrávat nejprve samotné otevírání příslušné tabulky.

Dále vybereme menu **Nástroje - Makro - Spustit záznam průběhu analýzy (hlavní makro)**. Nyní provedeme požadovanou posloupnost analýz nebo vytvoříme grafy, které dále upravujeme a podobně. Záznam ukončíme kliknutím na tlačítko **Zastavit záznam makra** na minipanelu, který se otevřel v okamžiku spuštění nahrávání makra, anebo v menu **Nástroje - Makro - Zastavit záznam**. V následujícím dialogu si makro pojmenujeme a potvrďme OK. Nyní máme k dispozici zaznamenaný kód, který můžeme upravit a následně uložit prostřednictvím nabídky Soubor -> Uložit/Uložit jako… Makro spustíme pomocí tlačítka **Spustit makro**, které je dostupné na hlavním panelu v okamžiku, kdy je aktivní okno s kódem makra, případně můžeme použít klávesu F5.
Všimněme si, že v příkladu zobrazeném na obrázku, je v kódu uložena cesta k souboru *Data_vyzkum*. Při spuštění makra proto bude vždy načtena aktuální verze tohoto souboru a analýzy se provedou nad aktuálními daty. Pokud bychom makro spustili již nad otevřenou tabulkou (Spreadsheet), v záznamu byl tento kód:

```vba
Dim S1 as Spreadsheet
Set S1 = ActiveDataSet
```

Makro by pak využívalo (a vyžadovalo) nějakou již otevřenou aktivní tabulkou v aplikaci STATISTICA.

16 Vlastní menu v STATISTICA

Software STATISTICA je rozsáhlý modulární program, kde jednotlivé moduly nabízejí velkou řadu statistických metod, naši uživatelé obvykle využívají analýzy z různých modulů. Proto si ukážeme možnosti, jak si práci zjednodušit a přizpůsobit si záložky programu podle svých představ.

Často využívané analýzy a funkcionality softwaru, stejně jako vlastnoručně vytvořená makra si lze uspořádat do vlastního rozevíracího „meníčka“. Postup tvorby vlastního menu v softwaru je následující:

Postup

V rozhraní Klasické nabídky klikneme (pravým tlačítkem myši) na volnou část horní lišty.

V dialogu Vlastní v oblasti Kategorie vyhledáme volbu Nová nabídka a z části Příkazy, na principu „táhni a pust“, přetáhneme funkcionalitu Nová nabídka do horní lišty, tedy do základní nabídky analýz.
Dialog *Vlastní* necháme otevřený, pravým tlačítkem myši klikneme na nově vytvořenou záložku a otevřeme roletku:

![Screenshot](image)

V roletce vybereme *Obrázek a text* a otevřeme dialog *Vzhled tlačítka*.

![Screenshot](image)

Záložka může být reprezentována textem, obrázkem anebo kombinací obou. Vybereme *Pouze text* a v okně *Text na tlačítku* napišeme název budoucí roletky: Název může reprezentovat oblast, pro kterou se dané analýzy hodí, anebo, jak jsme si všimli u našich zákazníků, název konkrétního souboru.

Nyní máme na liště nové tlačítko, v dialogu *Vlastní* v části *Kategorie* si vybereme funkcionality, které chceme do roletky přetáhnout. Funkcionality přetáhujeme opět na principu „táhní a pustí“:

![Screenshot](image)

Pokračujeme například metodami. V části *Statistiky* si přetáhneme analýzy a oblasti analýz, které chceme ve své roletce mít:

![Screenshot](image)
A nabídka je hotová.

Pokud vybereme v nabídce Obrázek a text, tak si můžeme vybrat z celé řady přednastavených obrázků, tlačítkem Úpravy potom vyvoláme dialog pro úpravu obrázků.

Výsledkem potom může být nová sada záložek, která obsahuje funkcionality, jež uživatel nejčastěji používá na různé typy datových souborů.

Další možnosti

Pokud potřebujete přidat jen jednotlivě často používané funkcionality, pak nemusíte vytvářet přímo celé nové menu. Pokud Vám to více vyhovuje, můžete přidat do volných oblastí nabídek často používané analýzy ve formě tlačítka. Tato tlačítka umístíte jednotlivě přetažením do volné oblasti klasického menu. Následuje obrázek s dvěma vlastními makry (Moje makro 1 a Moje makro 2), které se po kliknutí na tato tlačítka automaticky spustí:
Smazání záložek

Smazání záložek lze dělat dvěma způsoby:

1. Při otevřeném dialogu **Vlastní** opět na principu „táhni a pust“ přetáhneme konkrétní menu do oblasti **Příkazy** v dialogu **Vlastní**.

2. Druhou možností jak vrátit původní nastavení je smazání konfiguračního souboru **StatOpts.xml**, ve kterém jsou tato nastavení uložena. Dle Windows je uložen v:

```
C:\Documents and Settings\Uživatel (jméno účtu)\Data aplikací\StatSoft\STATISTICA\10.0.0.0.1029 pro Win XP nebo v: C:\Users\jméno účtu\AppData\Roaming\StatSoft\STATISTICA\10.0.0.0.1029 pro Win 7/Vista.
```

Pozor! Smazání konfiguračního souboru odstraní veškerá nastavení, která byla v softwaru STATISTICA nakonfigurována, např. ve **Správci výstupů**:

Nastavení se netýkají připojení do databáze, které je uloženo v systémových registrech. Konfigurační soubory **StatOpts.xml** s konkrétními nastaveními lze zálohovat a např. dávkovými příkazy na úrovni Windows je potom na konkrétním PC měnit, je-li žádoucí, aby
se nastavení softwaru STATISTICA na konkrétním PC pod konkrétním uživatelem měnilo (např. v počítačové učebně). Konfigurační soubor je v rámci jedné verze přenosný mezi jednotlivými počítači, resp. mezi operačními systémy. Pro zobrazení uvedených složek je nutné v PC povolit Zobrazení skrytých souborů a složek.

17 Závěr

Tento manuál stručně popisuje základní ovládání programu STATISTICA. Jednotlivé kapitoly přinášejí „kuchařku“, která usnadní orientaci v prostředí programu STATISTICA a provede uživatele analýzou dat od jejich vstupu do programu až po finální výsledky. Zbývá tedy jen popřát, ať se vám práce s programem STATISTICA daří podle vašich představ!